If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1600x-4x^2=50000
We move all terms to the left:
1600x-4x^2-(50000)=0
a = -4; b = 1600; c = -50000;
Δ = b2-4ac
Δ = 16002-4·(-4)·(-50000)
Δ = 1760000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1760000}=\sqrt{160000*11}=\sqrt{160000}*\sqrt{11}=400\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1600)-400\sqrt{11}}{2*-4}=\frac{-1600-400\sqrt{11}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1600)+400\sqrt{11}}{2*-4}=\frac{-1600+400\sqrt{11}}{-8} $
| I=1/8W+1/4w | | -4m-3=6-3m | | x–7=–3 | | 5x-1.2x=19 | | X²+4x=56 | | 7x+x=4x−(x−1) | | (3x/2)+5=(5x/2)-1 | | 4x-3=13x-82 | | 2x²+18=90 | | X=13y-1 | | 4×(x-3)=20 | | 3x+18=13x-83x= | | 2x+38=40 | | 10x-180=200 | | 4.2+10m=6.85 | | 3x+18=13x-83 | | 64=8x-6+2 | | -8y+4(y+4)=28 | | 5x-5=2(5x-5) | | 4x=2x+30x= | | -x-34=-39 | | 4x=-2x+30x= | | 2(x+4)=-3x+13 | | -12=4(v-7)-8v | | 81+8x-5=180 | | (-6x)x5=31 | | (2x+1)/2=(x+8)/5 | | 6=4(4x-5)+10 | | (x–10)+(x–10)=18 | | 1+7=4(7x-2) | | 5x²-8x=4 | | 50=x²+1 |